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The phase separation kinetics of a two-dimensional binary mixture at critical 
composition confined between (one-dimensional} straight walls which prefer- 
entially attract one component of the mixture is studied for a wide range of 
distances D between the walls. Following earlier related work on semiinfinite 
systems, two choices of surface forces at the walls are considered, one corre- 
sponding to an incompletely wet state of the walls, the other to a completely wet 
state (for D---, oo). The nonlinear Cahn-Hilliard-type equation, supplemented 
with appropriate boundary conditions which account for the presence of surfaces, 
is replaced by a discrete equivalent and integrated numerically. Starting from a 
random initial distribution of the two species (say, A and B}, an oscillatory con- 
centration profile rapidly forms across the film. This is characterized by two thin 
enrichment layers of the preferred component at the walls, followed by adjacent 
depletion layers. While in these layers phase separation is essentially complete, 
the further oscillations of the average composition at distance Z from a wall get 
rapidly damped as Z increases toward the center of the film. This structure is 
relatively stable for an intermediate time scale, while the inhomogeneous struc- 
ture in the center of the film coarsens. The concentration correlation function in 
directions parallel to the walls (integrated over all Z} and the associated struc- 
ture factor (describing small-angle scattering from the film) exhibit a scaling 
behavior, similar to bulk spinodal decomposition, and the characteristic length 
scale grows with time as ll l(t)= �9 + fit ~ where a is close to the Lifshitz-Slyozov 
value 1/3, and the coefficients ~t, fl depend on film thickness only weakly. Only 
when one considers the local correlation function at distances close to the walls 
are deviations from scaling observed due to the competing effects of the growing 
surface enrichment layers. However, at very late times [when /it(t ) becomes 
comparable to D] this bulklike description breaks down, and a concentration 
distribution is expected to be established which is a superposition of domains 

I School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India 
(Permanent address). 

2 Institut ftir Physik, Johannes Gutenberg-Universit~it Mainz, D-55099 Mainz, Germany. 

145 

0022-4715/94/1000-0145107.00/0 ~; 1994 Plenum Publishing Corporation 



146 Puri and Binder 

separated by interfaces perpendicular to the walls, the one type of domain being 
rich in A and nearly homogeneous, and the other poor in A except for two thin 
enrichment layers at the walls. 

KEY WORDS: Spinodal decomposition; surface enrichment; wetting; coars- 
ening; binary mixtures. 

1. I N T R O D U C T I O N  

While the kinetics of phase separation of bulk binary mixtures has found 
long-standing attention 11-13~ (see refs. 1~1 for reviews), the effects of free 
surfaces or confining walls have been studied 114-26) only recently. As is well 
known, the preferential attraction of one species of a binary mixture by a 
wall may lead to wetting phenomena (see refs. 27-30 for reviews). Thus for 
a binary mixture that is confined between walls and undergoes phase 
separation there is a complicated interplay of the coarsening domains in 
the bulk of the film with growing wetting layers at the walls,  t2~ 

Furthermore, finite-size effects (when the characteristic linear dimension of 
the growing domains becomes comparable to the distance between the 
walls; see refs. 32 and 34-36 for general reviews) may also come into play 
at late times. Experiments It5-19"22'24) are even more difficult to interpret: 
first, in experimental systems the two surfaces of the film are usually not 
equivalent (e.g., one surface of the thin film is an interface with air or 
vacuum, the other with a solid substrate). Second, experimental systems 
involve rather complicated materials such as polymer mixtures, where 
surfaces may lead to additional complications (e.g., the polymers when 
adsorbed at the walls may change their conformation and exhibit a very 
different dynamic behavior, c29'37"3s)) Third, attractive walls change the 
coexistence curve relative to the bulk phases (e.g., "capillary condensa- 
tion ''t39-4~)) in a manner that is not explicitly known for these systems. 
Finally, given that the late stages of spinodal decomposition in bulk fluid 
mixtures are governed by hydrodynamic mechanisms, t~-3'42-44) one has to 
worry to what extent these mechanisms are operative in thin films. 

Thus we feel there is a need to first clarify surface effects on spinodal 
decomposition in a thin-film geometry for simplified models, where the 
experimental complications listed above are absent. In this spirit, we 
consider a symmetrical binary solid mixture [microscopically it would be 
modeled by the Kawasaki 145) spin exchange kinetic Ising (SEKI) model, 
which has played a pivotal role already in promoting our understanding of 
spinodal decomposition in the bulk 1~'7-1~ and choose two equivalent 
walls which exert on the mixture only a short-range surface force. 
Experimentally, one probably deals with long-range surface forces, ~27"28) 
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but this is also a complication that we wish to avoid here. For this problem 
using a master equation approach t46) in a local mean-field approximation 
has led to the derivation of dynamical boundary conditions c~4"2~ which 
supplement the nonlinear Cahn-Hilliard tl'3"s) partial differential equation 
that describes spinodal decomposition in the bulk, and are hence consistent 
with the SEKI model but can also be justified in the critical region on 
much more general grounds, t2~ We have used these boundary conditions 
in our study of surface effects in a semiinfinite geometry t26) and also use 
them here. We note that in some recent studies other boundary conditions 
are used ad hoc (e.g., ref. 47), but we do not consider this as a valid 
approach to the present problem, for reasons we have discussed else- 
where.12~ 

This paper is organized in the following fashion. In Section 2 we define 
our model and introduce the quantities that we calculate in our computer 
simulations. As is well known, computer simulations have played a very 
important part in the development of the theory of bulk spinodal decom- 
position, t8-13) and this is the method of choice for the present problem also. 
Section 3 gives a detailed exposition of our numerical results. Section 4 
ends this paper with a discussion and outlook for further work. 

2. M O D E L  A N D  S I M U L A T I O N  T E C H N I Q U E  

As discussed in detail in refs. 14, 20, and 26, near the critical point of 
a binary mixture between two equivalent parallel walls at Z = 0 and Z = D 
one can describe the dynamics of the coarse-grained and rescaled concen- 
tration field ~(R, Z, r) by the dimensionless Cahn-Hilliard equation and 
dynamical boundary conditions as follows: 

0~(R,Z,r)t3r - V 2 { ~ ( R ' Z ' r ) - [ ~ ( R ' Z ' r ) ] 3 + ~  V2~(R'Z'r)} (1) 

Or Z = O, r) 

ar 
3r Z, r) z=o -h~ + g~(R,Z=O, r)+ ? OZ 

(YV" 
- \ ~ j  b--~ a'(R, Z, rl ~ 

- -5  I/Z'~'/3 a3~(R' Z '  z ) z = o  
6 \ 4 )  OZ 3 = 0 (2) 

{ 1 } O~ ~(R,Z ,r )_[~(R,Z ,r )]3+~V2[~(R,Z ,r )]  = 0  
aZ z~o 

(3) 



148 Puri and Binder 

Off)(R, Z = D, r) 

3r 
0r Z, r) z =  = h ~ + g # ( R , Z = D , r ) - y  OZ 

- ~ - 5 ~ ( R ,  Z,  z = o  

z=o=O (4) 

and 

2_ ~(R, Z, r ) -  [~(R,  Z, r)]  + ~  V2[~(R, Z, r ) ]  = 0  (5) 
~Z z= o 

In these equations, R and Z are distances parallel and perpendicular to the 
wall, respectively, measured in units of twice the bulk correlation length ~b 
and are hence dimensionless. While the gradient operators for the non- 
linear Cahn-Hilliard equation for the bulk order parameter [Eq. (1)] do 
not single out any direction in space, the boundary conditions (2)-(4) 
clearly make these coordinates R, Z nonequivalent. Similarly, the order 
parameter field q~ is also dimensionless and rescaled by the saturation value 
of the order parameter at the coexistence curve. Finally, r is a rescaled 
dimensionless time. t26> Obviously, by this rescaling any material-dependent 
parameters describing the bulk properties of the mixture have been absor- 
bed into the scale factors relating Z, ~, and r to the corresponding 
microscopic parameters/26) 

It is obvious from this discussion that our film thickness D is not 
measured in angstroms (A) but in units of 2~ b and hence is a dimensionless 
parameter. Thus the choice D ,> 1 is mandatory, because only then can we 
have well-separated domains, as the intrinsic domain wall thickness in 
mean-field theory is also given by 2~b .t49) 

Since Eq. (1) is a fourth-order differential equation, it is natural that 
for the finite interval {0 ~< Z~D}  there are four boundary conditions, two 
at each boundary: this suffices to yield unique well-defined solutions to 
the initial value problem, where ~ ( R , Z ,  r = 0 )  is specified. This is the 
initial value problem we wish to solve, considering quenching experiments 
from a temperature far above the bulk critical temperature T,. (where the 
initial equilibrium state is homogeneous, apart from random statistical 
fluctuations) to a temperature T where the homogeneous state is thermo- 
dynamically unstable. 

The boundary conditions (3) and (5) do not involve any parameters 
either and are trivially interpreted as a consequence of the conservation 
laws for the particle numbers for both species, implying that there cannot 
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be any concentration flux normal to the walls at Z = 0 and Z = D: no par- 
ticles are allowed to leave the confining thin-film geometry. The boundary 
conditions (2) and (4), however, do involve three parameters, hi, g, and ~,: 
in an Ising model language h I is a rescaled boundary magnetic field acting 
on the spins in the surface layers of the systems only. ~5~ In ref. 26 we 
have described in detail how in the framework of a lattice model for binary 
alloys this term arises as a consequence of missing neighbors near the wall 
(if pairwise interactions r ~Oss between like AA, BB neighbors differ) 
and of the energy difference between the potential energies of A atoms and 
B atoms adjacent to the walls. While the quantity y is again related to the 
bulk correlation length, ), = 4~ 3, the quantity g also results from "missing 
neighbors" and in addition depends on the ratio Js/J, where Js denotes the 
strength of pairwise (nearest-neighbor) interactions in the planes adjacent 
to the walls, while J denotes the analogous quantity in the bulk of the thin 
film. Obviously, we have once more assumed that the wall changes the 
energetics of the model right in the layers adjacent to the walls only. 
However, our treatment could be extended to the case with long-ranged 
interactions relatively easily. 

For T ~ T c, where this continuum description is reasonable since then 
~b is much larger than the lattice spacing and only then higher-order terms 
neglected in Eqs. (1)-(5) are small, 114~ it is obvious that in the static limit 
the boundary conditions reduce to 

0ff~(R, Z ) 0 Z  z=o = hiy g ~ ( R ,  Z =  0 ) y  (6) 

0~(R, Z) =h~+_g ff~,(R, Z = D )  (7) 

where we have neglected higher-order gradients. In the bulk, the static 
order parameter ~s(R, Z) satisfies the equation t49'5~ 

q~s(R, Z) - [ q~(R, Z)]  3 + �89 V2q~s(R, Z) = const (8) 

The resulting phase diagram of this model has been discussed extensively 
in the literature. For D --* oo, one finds in the plane of variables h I/7, g/~ 
a dividing line, namely the line of wetting phase transitions, separating the 
regime where the walls are incompletely wet (or dry, respectively) from the 
regime where they are wet (dry).  t27-29"49'5~ For g/), < - 2  one has second- 
order wetting, while for g/y > - 2  one has first-order wetting. For g/), > - 2  
one also finds prewetting at compositions slightly off-coexistence in the 
one-phase region. 

For finite D, the phase coexistence between the A-rich and B-rich 
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phases occurs at compositions different from the bulk t38-4~ and the critical 
wetting transition is rounded. Only the prewetting transition may still be 
present 15j> for large enough D. 

In order to characterize the dynamical behavior of the phase-separating 
system after the quench, it is convenient to introduce the following correla- 
tion functions ~26) (we specialize to the case of a two-dimensional system 
here, where R has only one component X) 

G l i ( X I - X , Z ,  r ) = (  ~ ( X I , Z ,  r) ~ ( X , Z ,  r ) ) - (  ~ )  2 (9) 

Note that although we consider an equal-time correlation function, there is 
a time dependence since we treat a nonequilibrium relaxation process 
following a sudden quench. A characteristic length scale parallel to the 
walls ltl(Z, r) can be obtained from the correlation function as follows: ~26) 

GII(IH(Z, r), Z, v )=  GiI(0, Z, r)/2 (10) 

Another quantity of interest is the integrated correlation function, which is 
the average of Eq. (9) over all values of Z, 

Gi"(X~ - X, r) = Gtl(Xi -- X, Z, r) dZ/D ( 11 ) 

Again we may define an associated length scale li"t(r) by 

Gim(lim(r), z) = Gint(0, r)/2 (12) 

Note that in Eqs. (9)-(12) we have explicitly made use of the translational 
invariance of the system in the direction parallel to the walls (realized in 
the numerical simulation by periodic boundary conditions). Thus it also 
makes sense to consider a Fourier transform, describing the intensity of 
small-angle scattering with a scattering vector k oriented parallel to the 
walls, 

Si"t(kx, r) = dX exp(iXk x) Gi"t(X, r) (13) 

These will be the quantities studied in the following section, in addition to 
the laterally averaged order parameter profile, ~.v(Z, r), defined as 

I? �9 .v(Z, r) = ~(X, Z, r) dX/Lx (14) 

Lx is the linear dimension of the simulated system in the X direction (we 
use Lx = 600 throughout). Additional quantities have been defined t26) and 
evaluated, but we do not present these here. 
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We now make a few general remarks regarding the numerical methods 
we use to solve Eqs. (1)-(5). We have implemented an Euler-discretized 
version of these equations with an isotropically discretized Laplacian on 
two-dimensional lattices of size L x x D where L, - -600.  (11"26) Similarly the 
boundary conditions (2) and (3) are implemented at Z = 0  and Eqs. (4) 
and (5) at Z =  D, with D ranging from 30 to 90. The mesh sizes of our 
discretization are Az = 0.05 a n d / I X = / I Z  = 1.5. Of course, these mesh sizes 
are too coarse to simulate accurately the original partial differential 
equation. Thus, this discrete model should be understood in the spirit of 
cell-dynamical system (CDS) models, which provide a discrete space-time 
description that is dynamically equivalent to the continuum description. (11) 

The mesh sizes are also too coarse to reproduce the precise short- 
wavelength structure near the walls. (26) However, as already demonstrated 
in previous work, the time scales of growth of the enrichment (and deple- 
tion) layers adjacent to the surfaces are much slower than the time scale of 
phase separation for our choice of parameters and when the surface forces 
are short ranged. As in ref. 26, we choose y = 4, g = 4, and two choices of 
h l namely h~ = 4 (this corresponds to an incompletely wet equilibrium of 
a surface in a semiinfinite system) and h~ = 8 (this corresponds to a choice 
of an equilibrium state deep in the wet phase for a semiinfinite system). 

We have also carried out a simulation with a distinctly finer mesh, 
namely / IZ  = 0.6 and / Iv  = 0.001, but only for the one-dimensional case. In 
this case the simulation can be run up to "equilibrium," which is reached 
at times of the order of r ~ l04. However, already at this point we make 
the caveat that such a one-dimensional simulation can describe only those 
equilibrium states which are homogeneous in the X direction. This is not 
expected to be the case for our model, as will be discussed in some detail 
in Section 4. 

We finally emphasize that for the time range studied (r ~<4000) any 
finite-size effects associated with our choice of Lx = 600 can be safely 
ignored. This fact has been checked explicitly in our previous study of semi- 
infinite systems, t26) where also sizes L x = 150 and L x = 300 were used. All 
results for profiles, correlation functions, and structure factors are averages 
over 200 independent initial conditions. Each initial condition consists of 
uniformly distributed random fluctuations of ~(X, Z, r = 0 )  of amplitude 
_ 0.025 about a zero background. Our simulation thus simulates a "critical 
quench" (the average value of q~ stays zero throughout, i.e., the mixture is 
at the critical composition of our system for D ~ oo), with an initial condi- 
tion at "infinite ,temperature" (or in a state in the one-phase region with a 
correlation length (b distinctly smaller than at the temperature to which the 
system is quenched). 
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3. N U M E R I C A L  R E S U L T S  

We begin by presenting our numerical data for the case hi = 4  (corre- 
sponding to an incompletely wet static equilibrium). Figure l illustrates the 
time evolution of our discrete model by presenting snapshot pictures for 
two thicknesses. One sees, even for very early times, the systems have for- 
med enrichment layers at the walls which are approximately two cells wide, 
i.e., of thickness 2 d Z =  3 (remember that lengths are measured in units 
of 2(b). These layers hardly change during the displayed time evolution at 
all [only when one studied the profiles of @av(Z, r) with a much finer mesh 
size can one see a slow growth of the thickness of these surface enrichment 
layers with timer261]. These enrichment layers are followed by adjacent 
depletion layers of the same thickness: the material adsorbed at the surface 
in these enrichment layers is simply transported from the closest possible 
distances to the walls. Qualitatively the same behavior has been found 
analytically and numerically for the kinetics of surface enrichment in the 
one-phase region. 1~4'2~ These depletion layers are followed by another 
enrichment layer further inside the films. Initially, these second enrichment 
layers have about the same thickness as the layers directly adjacent to the 
walls, and have minor irregularities in the X direction parallel to the walls 
only. However, later, the thickness of this structure grows, as do the linear 
dimensions of the domains in the center of the thin film. Furthermore, 
during the coarsening process, domains of negative order parameter formed 
in the bulk of the film coalesce with the depletion layer mentioned above. 
At the later stages for the thinner film (D = 30) we can already recognize 
situations where locally there are only A-rich zones at the walls, while the 
A-poor region extends throughout the film in the perpendicular direction, 
connecting the right and the left depletion zones in the thin film with each 
other. If one could run the simulation long enough, we expect that the film 
would ultimately decompose into a succession of A-rich domains (which 
would be plug-shaped and uniformly black in the snapshot picture) 
separated by A-poor domains of about the same size (which are also plug- 
shaped and uniformly white in the center, but "decorated" with surface 
enrichment layers rich in A--i.e., black regions in the snapshot--at the 
domain walls). 

These observations from single snapshots are made more quantitative 
when one considers the time evolution of the laterally averaged order 
parameter profiles ~av(Z, r), which are shown in Fig. 2 (recall that these 
data are based upon 200 independent time evolutions of the type shown in 
Fig. 1). The approximate time independence of the enrichment layers adja- 
cent to the walls followed by similar nearly time-independent depletion 
zones is clearly seen. The boundary conditions at the surface thus have a 
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Fig. 1. Pictures of the time evolution from one discrete Euler implementation (with 
ziX= 1.5, dr  = 0.05) of the partial differential equation [ Eqs. ( I ) - (5)]  on the square lattice in 
a D x L,. geometry, with L~ = 600 and D = 30 (a) and D = 60 (b). The snapshots refer to the 
scaled times (from left to right) r = 50, 100, 200, 500, 1000, and 4000. Positive values of the 
order parameter are shown in black, while negative values are not marked. The parameter 
values chosen are ),= 4, g = - 4 ,  and h~= 4, which correspond to an incompletely wet static 

equilibrium in a semiinfinite geometry. 

822/77/1-2-12 
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very dominant behavior on the system, and enforce a "wavelength" of the 
order parameter oscillations near the wall which is nearly independent of 
time and film thickness. Any coarsening of the structure in the Z direction 
would mean an increase of the wavelength with time and this is seen only 
in the interior parts of the thin films. In fact, due to this coarsening, a max- 
imum of ~av(Z, r) that is present in the center of the film with D = 30 for 
early times (r~< 100) later vanishes and gets replaced by a minimum for 
times r~>400. The adjacent maxima (describing the two interior enrich- 
ment layers described above) steadily get reduced in height for both D = 30 
and D = 60. We expect that in the final equilibrium profile these structures 
disappear altogether, and that a profile results which decreases from 
~ e q ( Z = O )  = t~eq(Z=D ) ~ 1 after a few layers to a value slightly below 
zero, in order to respect the conservation law of the concentration, which 
requires 

D D 

Ii ~av(Z, "[) dZ= Io I~)eq(Z) dZ:O (15) 

As discussed above, this (hypothetical) equilibrium profile results 
from a superposition of A-rich domains, which basically have ~ ( Z ) ~ 1  
for all Z, and A-poor domains, which have ~ ( Z ) ~  1 for 0 < Z < 3 ,  
D - 3  < Z < D  (the enrichment layers), and ~ ( Z ) ~ -  1 elsewhere: The 
volume fractions P+ ,  P_  of these two types of domains are then adjusted 
such that the laterally averaged profile 

qgeq(Z)=P+~e+q(Z)+P_~q(Z), P+ + P _  = 1 (16) 

satisfies Eq. (15). For large D both P+ and P are close to �89 and thus 
q~eq(Z) ~ 0 apart from the narrow surface enrichment layers near the walls. 

Note that one does not obtain this correct description of equilibrium, 
[Eqs.(15), (16)] if one simply solves the one-dimensional version of 
Eqs. (1)-(5), where the X-dependence is suppressed. Figure 2b, as a warn- 
ing signal, gives an explicit demonstration that one gets a very different 
metastable solution from such a one-dimensional calculation. In fact, the 
character of this one-dimensional solution is nearly trivial to under- 
stand: the system must satisfy the boundary conditions, which require 
~eq(Z = 0) ~ 1, ~eq(Z = D) ~ 1, together with the constraint that the total 
order parameter is zero [Eq. (15)]. The only way to do this in o n e  

dimension and find a minimum of the free energy functional is to place two 
interfaces between phases with the positive value of the order parameter 
(domains adjacent to the walls) and the negative value of the order 
parameter (in the center of the film). Any structure with more interfaces 
(such as the structures in Figs. l a, l b, 2a, and 2c) has a higher total inter- 
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facial free energy than the state of Fig. 2b and hence can be at best 
metastable with respect to this state. Of course, the profile shown in Fig. 2b 
means that one has two interfaces running parallel to the walls throughout 
the total extension of the film. Thus the total interfacial energy of this con- 
figuration is 2L~fin,, where fiat is the (rescaled) interfacial tension of our 
model [ which can be calculated from Eq. (8) by imposing boundary condi- 
tions �9 s(R, Z ~  ~ )  = + 1, ~s(R, Z ~  - c o )  = - 1, (1"3'49'53) and obviously is 
of order unity in our scaled units of length, etc.] In contrast, such an inter- 
facial contribution for the inhomogeneous solution postulated in Eq. (16) 
appears only for the profile ~ q ( Z ) ,  but not for ~ ( Z ) ,  and hence the 
total interfacial energy of the suggested configuration in Eq. (16) is only 
2P_ L x f i n  t if the domains are very large in the X direction, which is always 
expected in d =  3 dimensions. (In equilibrium, there would only be two 
domains, and respecting the periodic boundary condition in the X direc- 
tion, one needs two interfaces, which give an additional interfacial free 
energy cost of 2 D f i n t ,  which is negligible for L X >> D). In d =  2 dimensions, 
the situation is somewhat more subtle since a strip of finite width D is a 
quasi-one-dimensional system. Thus, strictly speaking, the two-dimensional 
strip has no phase transition, and there is a finite linear dimension of the 
domains in the X direction even for Lx ~ ~ ,  namely 154)/~ oc exp(2fia, D). 

Thus the contribution of the interfaces running perpendicular to the 
walls to the total free energy is negligible also for d = 2 if D >> 1, which is 
the situation considered: for D ~ 1 there is a large distortion of the phase 
diagram in the capillary (39~1) and hence the quench is still in the one-phase 
region for very small D. However, this situation is not considered here. In 
any case, we wish to emphasize that one-dimensional solutions of Eq. (1), 
which are rather popular in the literature because the computing effort is 
so much less and they can be run up to the final "equilibrium," necessarily 
never yield a description of an inhomogeneous equilibrium resulting from 
the superposition of coexisting phases, and as a rule will yield metastable 
states of little physical significance only. Figure 2b is a demonstration of 
this statement. 

We next turn to a discussion of the correlation function GII(X 1 --X, Z, l'); 
cf. Eq.(9) (Figs. 3-6). Figure 3a-3c show GII (X~-X ,Z , r )  for D = 3 0  
at different values of Z and times r = 800, 2400, and 4000. As for the semi- 
infinite system, (26) at the surface ( Z =  0) the correlation function vanishes, 
because there is a uniform positive order parameter with no fluctuations. 
Also for Z = 6, a position in the second enriched layer (cf. Figs. 2a and 2c), 
the correlation function exhibits little structure, it is close to a monotonic 
decay to zero and develops at best a shallow minimum. Only deeper in the 
bulk does the correlation function develop the characteristic minimum, 
which is the hallmark of a spinodally decomposing system. ((~ Corre- 
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sponding data for the correlation function for the film with D = 60 are 
shown in Fig. 4. While for the smaller thickness (D = 30) the correlation 
function in the center of the film deviates from its bulk counterpart (shown 
as a solid line) already at rather early times (3=800 ,  Fig. 3a), for the 
thicker film (D = 60) the data at early times for the correlation function in 
the center of the film agree with bulk behavior quantitatively (Fig. 4a), and 
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Fig. 5. Time dependence of the length scales in the direction parallel to the surfaces, Itl(Z, r), 
for four values of Z, as indicaed in the figure, for D = 3 0  (a) and D = 6 0  (b). The bulk 
behavior is shown by asterisks. These lengths are defined as the distance at which the correla- 
tion functions Git(X~- X, Z, r) (Figs. 3 and 4) fall to half their initial values [Eq. (10)]. The 
data for r > 1600 are fitted to the power-law form Itl(Z , r ) =  ~ + fir ~ (curves through the sym- 
bols) by the fitting procedure described in the text. The resulting "effective exponents" are, for 
D = 30, a = 0.32 ( Z -  6), 0.30 (Z = 9), and 0.29 (Z = 15 ); and for D = 60, a = 0.32 (Z = 6), 0.30 
(Z = 12), and 0.29 (Z = 18, Z = 30); the bulk exponent over this range of times is a = 0.29. The 
error bar on the growth exponents is +0.02. 
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only at later times when the characteristic linear dimension lli(Z, t) has 
grown rather large is the finite film thickness also felt by the time evolution 
of the growing domains in the center of the film, and Gif(X ~ - X ,  
Z = 1)/2, r) starts to deviate increasingly from the bulk behavior. 

The time evolution of the characteristic linear dimension ljl(Z, r) 
obtained from the correlation function [Eq. (10)] is shown in Fig. 5. One 
can see that lit(Z, r) is larger for small Z--this  simply reflects the fact that 
the growing domains typically have a rather elongated shape and near the 
walls are oriented parallel to the walls, as is obvious from a glance at the 
snapshot pictures in Fig. 1--but otherwise the time evolution for all Z is 
rather similar. Since we expect that the characteristic linear dimension 
exhibits a power-law growth ,  (1-3'6-13'26'55) we have attempted to fit the data 
points for r >  1600 to a power law of the form l l l ( r ) = ~ + f l r  ~. Since this 
form contains three parameters, and the available time range is rather 
limited, a meaningful fit is nontrivial to carry out. We have found it useful 
to consider the auxiliary function t26~ 

f (Z ,  r ) =  Jill(Z, r2)--IN(Z, r)]/[lll(Z, r2)--Ill(Z, r l ) ]  (I7) 

where r~, r 2 are the boundaries of the time interval we wish to fit (r] = 1600 
and r2=4000 in this case). This function eliminates the parameters 0t 
and fl and leaves a single parameter (namely a) to be deermined. Using a 
nonlinear fitting routine, the data (100 points) can be well fitted (as shown 
by the curves in Fig. 5), and the effective exponents a are as indicated 
in the figure caption. As mentioned in the introduction, bulk spinodal 
decomposition gives an asymptotic exponent a = ]  (Lifshitz-Slyozov 
growth~6']~ but the approach to this asymptotic behavior is known 
to be rather slow, ~~ and thus for the range of times studied here a 
somewhat smaller effective exponent is found, a ~0.29, consistent with 
previous experience, t~~ The effective exponent close to the wall is some- 
what enhanced, which is probably due to the fact that the data are affected 
by the existence of the enrichment and depletion layers near the wall, which 
are homogeneous in the X direction and slowly growing in thickness, t26~ 
and therefore affecting the data for Ill(Z, r) at small Z. Note also that the 
data for Z = 6 are practically identical for both values of D shown, and 
furthermore agree with corresponding results for the semiinfinite case. Also 
for Z = 12 the dependence on film thickness is rather small. 

A long-standing idea on the dynamics of spinodal decomposition in 
the bulk has been the concept of dynamical scaling, (7) i.e., the correlation 
function depends on time only through the ratio of the considered distance 
to the characteristic length scale. This is tested in Fig. 6, where we super- 
pose scaled correlation functions as a function of scaled lengths at different 
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times. It is seen that  for Z = 6, devia t ions  from scaling are ra ther  pro-  
nounced both  for D = 30 and  D = 60. F o r  small  values of  Z,  the da t a  do  not  
col lapse well on a master  curve, but  ra ther  deviate  systematical ly  (Figs.  6a 
and 6c). Of  course,  such deviat ions again reflect the influence of  the slowly 
growing surface enr ichment  layer t26) and  hence are not  unexpected.  In the 
center of  the film a ra ther  good  scaling is observed (Figs. 6b and 6d), 
a l though the scaling functions do  depend somewhat  on film thickness and 
thus approach  the bulk  behavior  (shown as a solid line) ra ther  slowly. 

In Fig. 7 we s tudy the ana logous  scaling behavior  of  the integrated 
correla t ion function Gint(xl  -- X, T) [def ined in Eq. (11)] .  It is seen that  
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times t = 1600, 2400, 3200, and 4000 (as indicated by different symbols) for D = 30 (a) and 
D = 60 (b). Full curves show the corresponding scaling function of a bulk system. 
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Fig. 8. Time dependence of the integrated length scale /il~t(r) [cf. Eq. (12)] plotted vs. r for 
four choices of the film thickness D as indicated in the figure. Asterisks show the bulk 
behavior. The data for r >  1600 are fitted to the power-law form I~ t ( r )=~t+f l r  ~ (curves 
through the symbols) in exactly the same manner as done for Ill(Z, r). The resulting effective 
exponents are a = 0 . 3 0  ( D = 3 0 ) ,  a = 0 . 2 9  (D=45) ,  a = 0 . 2 8  ( D = 6 0 ) ,  and a=0 .29  (D=90) .  
The bulk exponent over this range of times as estimated from one-dimensional data is 
a = 0.29. The error bar on the growth exponent values is +0.02. 
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despite the disturbances that the wails create on the growing patterns 
(Figs. la and lb) one observes a nearly perfect data collapse--only a close 
look reveals small but systematic deviations. The length scale int lli (T) u s e d  to  

scale these data depends on film thickness D only slightly and its time 
dependence is rather similar to the bulk behavior for the time range studied 
(Fig. 8). 

Figure 9 compares the scaling functions for Gi"'(X~ - X ,  r) for different 
thicknesses. Although the general shape of these functions is similar, the 
minimum is distinctly shallower than in the bulk, and the convergence 
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Fig. 10. Scaling plot of the normalized scattering function Sim(k~, r ) ( k x )  versus the nor- 
realized momentum transfer k,/(k~) in a semilog plot. Here ( k ~ )  = ~ k~Si"t(k~, r) dk,  is the 
first moment  of the normalized scattering function and its inverse ( k , )  -1 can also be con- 
sidered as a measure of the characteristic length scale, t1~'7-91 Four different film thicknesses 
are shown by different symbols. (a) h i = 4 ;  (b) h~=8 .  The surface field value h i = 8  
corresponds to a wet static equilibrium in a semiinfinite geometry. 
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toward bulk behavior is rather slow in the regime of the minimum. Finally, 
we turn to the Fourier transform of Gi"t(X~- X, r), the scattering function 
Gi"'(kx, 3). Figure 10 shows the scaled scattering function as a function of 
the scaled wavevector for different values of film thickness D on a semilog 
plot. We have not included the point corresponding to Kx=0 ,  where 
Gi"t(0, 3 )=0 ,  by conservation of order parameter. This quantity is 
of particular interest, as it would be experimentally accessible. Since 

Fig. 11. Snapshot pictures of the time evolution from one discrete implementation of the 
partial differential equation, as in Fig. l, but for hj =8 ,  with Lx=600  and D = 3 0  (a) and 
D = 6 0  (b). The snapshots refer to the scaled times (from left to right) ~=50 ,  100, 200, 500, 
1000, and 4000. 
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G i n t ( x i - X ' ,  t-) showed approximately scaling behavior, it is no surprise 
that a similar scaling behavior must be found for its Fourier transform, 
Gint(kx, r). However, we add a caveat: the time range is rather short and 
is essentially the region dominated by two-dimensional growth. From 
Fig. 8 it is evident that the average linear dimensions /il~t(r) are still much 
smaller than the linear dimension of the film. Since lily'(r) grows only rather 
slowly in the scaling regime in, rill (~ )=c t+ f l r  a with a ~ � 8 9  this behavior 
would not change even if we add another decade in simulation time. Only 
for substantially larger time scales, which are not accessible to our simula- 
tion for reasonably large film thicknesses, do we expect that lil~'(r) becomes 
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from the first wall for four different scaled times as indicated, for D =  30 (a) and D = 6 0  (b). 
Parameters chosen are ) '=4 ,  g = - 4 ,  and h,=8, as in Fig. I1. Again the averages are 
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comparable to D and then a crossover to quasi-one-dimensional growth 
sets in, dominated by the diffusion of domain walls that are oriented per- 
pendicular to the walls. In this crossover region, one may anticipate again 
clear deviations from the simple scaling as shown above. The scaling 
behavior studied in the present regime can be estimated to be valid over a 
time range of 10 3 ~< r ~< 10D 3, and for D = 60 the upper limit of this range 
is indeed of the order of 106 . 

As the final results of this section, we discuss the dynamical behavior 
for boundary forces that would lead to a wet state of the surface in a semi- 
infinite geometry. ~26) Both the comparison of the snapshot pictures (Figs. 1 
and I 1 ) and of the average profiles (Figs. 2 and 12) reveal that the behavior 
of the decomposing film is only little affected by this change in boundary 
condition. In our earlier study of surface effects on spinodal decomposition 
in semiinfinite geometry ~26) we have shown that the growth of the thickness 
of the wetting layer, though present, is so much slower (namely logarithmic 
in time) than the Lifshitz-Slyozov growth of the phase-separated domains 
in the interior, and that this thickness hardly changes on the time scales of 
interest for spinodal decomposition. Thus the main distinction is that now 
the order parameter in the enrichment layers adjacent to the walls is 
enhanced to a value distinctly larger than unity (Fig. 12), which was not 
the case for the boundary condition corresponding to the incompletely wet 
state (Fig. 2). 

As a consequence of the above considerations, the behavior of the 
correlation functions GIt(X]-X,  Z, r) and of the associated length scales 
IN(Z , r) turn out to be very similar to their counterparts in the case where 
the boundary field hi = 4 (the incompletely wet case) and for the sake of 
saving space we do not show these data here. As a representative example, 
we only present the scaling behavior of the integrated intensities (Fig. 13) 
and the associated time-dependent length scale lilTt(z" ) (Fig. 14). The scaled 
scattering function has already been anticipated in Fig. 10b and is also 
hardly distinguishable from its nonwet counterpart. Qualitatively the 
behavior is exactly as in the "nonwet" case, although for comparable thick- 
ness D and similar times r the length scale int 111 (r) is slightly larger in this 
case. In this way, wetting of the surfaces leads to a small enhancement of 
the rate at which phase separation occurs in a thin film. But again the 
quantitative differences between Figs. 7, 9, and 11 are minor. In view of 
the various experimental claims on the strong effects of wetting layers on 
the kinetics of spinodal decomposition 1~8'~9'22) this result is certainly some- 
what unexpected! Of course, it should always be kept in mind that our 
modeling and results are for the case where the wall exerts a short-range 
force on the binary mixture and there are no hydrodynamic effects. 
Experimental systems need not necessarily conform to our simple picture. 
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Fig. 14. Time dependence of the integrated length scale i,, / N (r) [cf. Eq. (12)] plotted vs. r for 
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instead of h t = 4. The fits to the power law /il~t(r)= ct + fir ~ are included and yield effective 
exponents which are only slightly larger for D~<60 than in Fig. 8:a=0.31 (D=30), 0.30 
(D =45), and 0.29 (D=60, 90, and bulk). The error  bar  on the growth exponent is +0.02. 

4. S U M M A R Y  A N D  D I S C U S S I O N  

In this study, numerical calculations were presented to describe 
spinodal decomposit ion of  binary mixtures in a thin-film geometry. We 
consider the case of two equivalent walls which energetically prefer one 
component  and thus create an interplay between the formation of  surface- 
enriched layers adjacent to the wall and spinodal decomposition. For  sim- 
plicity, we have chosen a two-dimensional geometry (with one-dimensional 
walls), since our  numerical method (which in the static equilibrium case 
would reduce to a Ginzburg-Landau- type  treatment) makes little dif- 
ference between d =  2 and d = 3 dimensions. We have argued, however, that 
one-dimensional versions of the theory would miss important  physical 
effects, since then only interfaces parallel to the wall are possible, since no 
inhomogeneity in the X direction is allowed and interfaces perpendicular to 
the wall are suppressed. Arguments have been presented which suggest that 
for large D the equilibrium state toward which the system develops must 
contain such interfaces perpendicular to the walls. 

We also emphasize that it is important  to choose the correct boundary  
conditions, Eqs. (2)-(5), which have been motivated both from microscopic 
spin-exchange kinetic Ising models 114'2~ and from general symmetry prin- 
ciples/ 2~) Since these boundary  conditions are of  the relaxational type 
for the local order parameter  at the walls [Eqs. (2) and (4)],  they lead to 
rapid establishment of  local equilibrium at the walls, i.e., a thin surface- 

822/77/1-2-13 
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enriched layer at the walls is formed, which necessitates the formation of an 
adjacent depletion layer, since the conservation law for the order parameter 
has to be respected. Inside this structure dominated by the wails, kinetics 
of spinodal decomposition proceeds more or less as usual, the only effect 
of the walls being that the orientation of elongated domains near the walls 
is predominantly parallel to the walls, i.e., the linear dimension Ill(Z, 3) 
near the walls is enhanced. In the average parallel linear dimension 11~ t this 
phenomenon leads to a slight enhancement as D decreases, of course, since 
the surface region affects a relatively larger fraction of the film, the smaller 
is D. Apart from this trivial thickness effect, there is little dependence on D 
visible in the time range studied. However, for much larger times we expect 
that an interesting thickness dependence should occur, due to a crossover 
to quasi-one-dimensional growth when i,t I u (r) is of the order of D and there 
should not be any inhomogeneity in the Z direction (apart from the thin 
surface enrichment layers at the walls). 

For small D one expects that the unmixing transition temperature of 
the thin film is shifted to lower temperatures, and also the critical compo- 
sition is shifted, since the boundary fields [Eqs. (6) and (7)] break the 
symmetry of the bulk model I-Eq. (8)] with respect to a change of sign of 
the order parameter. It then is possible to consider quenches that stay out- 
side the phase coexistence curve of the thin film, although they would be 
in the two-phase coexistence region of the bulk system. Such cases have not 
been considered here, however, because we feel an appropriate treatment of 
the inhomogeneous equilibrium profiles that then develop in the thin film 
requires a treatment beyond Ginzburg-Landau theory. While the cell- 
dynamics methods CI1) used here are adequate for the late stages of spinodal 
decomposition (thermal fluctuation effects can then be neglected, as the 
fluctuations contained in the initial state are deterministically amplified), 
this technique is not suitable to describe critical phenomena such as 
associated with the shape of a two-phase coexistence region and its change 
in a thin-film geometry, etc. 

An obvious and interesting extension of the present treatment would 
be the consideration of off-critical quenches and/or asymmetric boundary 
fields. Note also that we have considered just two typical cases of 
parameters in the boundary conditions, but a more systematic scan of what 
these boundary terms can effect should also be worthwhile. The present 
paper can be considered as a modest first step only, although the physical 
situation is much simpler and clear-cut than in the experiments. 
Nevertheless we hope that the present work will contribute to a better 
interpretation of these experiments as well. 
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